
!_:i!il¸:: i

!!i!_ •

iļ _:: =_

//,, _'_:::_ N95- 17253

SCOS II: ESA'S NEW GENERATION OF MISSION CONTROL SYSTEM

M Jones, N C Head

Flight Control Systems Department, European Space Operations Centre (ESOC)
Robert Bosch Str. 5

64293 Darmstadt, Germany

K Keyte, Vitrociset SpA, Rome, Italy

P Howard, Science Systems Ltd, Bristol UK

S Lynenskjold, Computer Resources International (CRI), Birkere_t, Denmark

ABSTRACT

New mission-control infrastructure is currently being
developed by ESOC, which will constitute the second
generation of the Spacecraft Control Operations
system (SCOS II). The financial, functional and
strategic requirements lying behind the new
development are explained. The SCOS II approach
is described. The technological implications of these
approaches is described: in particular it is explained
how this leads to the use of object oriented
techniques to provide the required "building block"
approach. The paper summarises the way in which
the financial, functional and strategic requirements
have been met through this combination of solutions.
Finally, the paper outlines the development process to
date, noting how risk reduction was achieved in the
approach to new technologies and summarises the
current status future plans.

1. INTRODUCTION

This paper describes the new infrastructure

for Mission Control Systems which is being

produced at the Operations Centre of the

European Space Agency in Darmstadt. This

infrastructure is the second generation of

the Spacecraft Control Operations System

(SCOS) and will replace the current

generation SCOS I (Mullet et al., 1990) for

all new ESOC mission implementations.
First candidate client missions are

ARTEMIS (a data relay mission), ENVISAT

(an earth observation mission) and

HUYGENS (a Titan probe). The paper

concentrates on the programmatic and the

main functional aspects; technical details

related to the implementation techniques

and technologies can be found, for example,

in Keyte (1994).

2. WHY SCOS II?

In order to provide the context for a
discussion of SCOS II and its features it is

important to have an understanding of the

motivations behind the development of "yet
another" set of mission control infrastructure

and of the general operational environment

in which SCOS II based systems will be
used. The main factors which led to the

SCOS II development are broadly as follows

(Jones et al. 1993):

• financial:

The development of Mission Control

systems based on ESA's current

generation of infrastructure software

(SCOS I) is costly. This is due, at

least in part, to the inflexibility of

the SCOS I system structure and the

resulting difficulty of customising
SCOS I software to a mission and of

adding mission specific software to

the basic system.

641



• functional:

The increasing complexity of

missions requires a corresponding

increase in the capabilities of the

control systems. For the same reason

the effort involved in preparing and

monitoring mission operations is

increasing.

• vendor independence:

The cost and flexibility of computer

hardware for previous systems have
been item of concern. The

centralised, host-based, architecture

of these systems which, resulted in

the use of large mainframe

computers to support mission

operations. This resulted in

dependence on the operating system

and basic software provided by

vendors of the particular host

computers chosen, thus effectively

tying the Agency to these vendors.

The major drivers for SCOS II can thus be

summarised as reduced cost per mission

with increased flexibility and portability.

o THE SCOS II PROJECT:

OVERALL APPROACH AND

PROGRAMMATICS

The SCOS II project began in 1990 with the

general aims outlined in the previous

section. A large investment of effort was

made to define a comprehensive set of users

requirements and associated operations

concepts resulting in a very substantial User

Requirements Document (URD). This work

is outlined in a companion paper (Kaufeler

et al. 1994). At an early stage a decision

was made to use object oriented analysis,
which with its focus on the Problem

Domain, encouraged interaction between the

User Requirements work and the software

requirements analysis. This led to the need

to cope with evolving user requirements and

overlapping development phases. How this

was resolved in terms of software

development approach is discussed by Pujo

et al. (1994) and Symonds et al. (1994).

The implementation language is C + +.

The implementation is proceeding in a series

of releases, which will successively add

functionality to cover the all areas of the

URD. Release 1, due in early 1995

includes the new concept of "system

elements" explained in the next section and

will have equivalent functionality to the

existing SCOS I infrastructure, including in

addition telecommand functions (missing

from SCOS I) and more modern user

interfaces. A "Proof of Concept" prototype

was developed and demonstrated in early

1993 to verify the feasibility of the

distributed system technology. At the end of

1993 a "telemetry demonstrator" was

available, which showed telemetry

processing basic functions and associated
man-machine interface.

Release 2 (1995-1996) and Release 3 (1997-

1998) will add further advanced

functionality including areas such as

mission planning which have never been

treated generically within ESOC before.

o WHAT IT DOES: THE

PROCEDURE-ORIENTED

OPERATIONS APPROACH AND

SYSTEM ELEMENTS

As in most Operations Centres, ESA

mission operations are centred around

"procedures" which are executed

automatically subject to the occurrence of

specified events (usually anomalies) in either

the flight or ground segments.

Non-procedural (i.e. manual) operations are

642



/i) _ii

! , :2 •

reserved for those inevitable cases where

appropriate procedures have not been
foreseen.

Mission operations engineers usually regard

spacecraft as being composed of a number

of systems, sub-systems or assemblies. The

process of mission control consists of

performing actions (either active, controlling

ones or passive, monitoring ones) with one

or more such systems or sub-systems. Each

of these actions is driven by an appropriate

procedure.

A particular procedure may "call-up" other

procedures to perform some portions of its

work. Similarly, a procedure may be called

by other, higher level, procedures to

perform some actions on their behalf.

Loosely speaking, the set of procedure for a

mission can be viewed as forming a tree-like

hierarchy whose structure is very closely

related to the hierarchy formed by the

system, sub-system and assembly

relationships of the spacecraft itself.

SCOS II infrastructure directly supports the

modelling of systems, sub-systems and

assemblies. These components are all

represented as objects referred to as "System

Elements". The relationships between these
Elements are stored in the mission database

in a tree-like structure (see fig. 1). System

Elements are used in a number of ways in

the SCOS II system.

4.1 Abstract Monitoring & Activities

The execution of a typical procedure

consists of three major phases:

o setup: checks to ensure that

preconditions for execution of the

procedure are satisfied and that

required tools are available

execution: use of the tools to

perform the activity (this may be a

passive, monitoring only activity)

D assessment: check that the results of

the activity are as expected and that

all required post-conditions are
satisfied.

SCOS II System Elements provide support

for all three phases, hiding the use of

subordinate System Elements from the user

once this use has been defined in the

database:

o a System Element provides an high
level view of the current status and

mode of the unit which it represents;

initiation criteria for the procedure

can be expressed in terms of these

i:

Figure 1 A simple hierarchy of System Elements

643



i • ??:;•i:::_ ¸

?_iii'i i_i_

i _ ii ',_i

_, • _ii I

_ iii!_

values (for example "is the AOCS in

fine pointing mode?")

a System Element provides a set of

high level activities which can be

initiated either directly or on behalf

of other procedures (for example

'perform thruster cat bed preheat')

a System Element, again based on

high level status and mode

assessments, allows simple

assessment of the success of the

activity (for example, 'is the AOCS

now in sun-pointing mode with

nutation < 0.1 degrees?')

4.2 Event-based procedure initiation

SCOS II provides capabilities for System

Elements to signal the occurrence of

"Events" (a mode change for example) and

to associate "Actions" with these

occurrences. One of the types of Action

which will be supported is the initiation of a

procedure (referred to as an Activity in

SCOS II) which may be either diagnostic in

nature or may, in the case of unexpected or

critical events, take some form of safe mode
initiation.

4.3 Building system elements - element

templates

Often a spacecraft will have a number of

similar devices (gyro's for example) which

have an essentially identical set of

operational procedures; differences are only

to be found in the specific parameters and

command encoding details. SCOS II

supports the concept of System Element

Templates which contain a master definition

of the Element behaviour with empty slots

for such specific data. Populating the

mission database for each of the specific

instances of the templated unit is then a

matter of 'filling in the blanks' in the

template. This should greatly ease the

version control of the database as updates

need only be applied once to the template

rather than several times, testing of the

database will be similarly reduced in cost.

4.4 Element Connections & Dependencies

Many operational constraints and checks in

traditional systems are centred around a

relatively small number of issues (power
status, redundant unit status etc). The

configuration of a traditional system to deal

with these consumes a significant proportion

of the overall configuration effort. SCOS II

explicitly supports the concepts of relations

between System Elements for (a) power

supply and consumption, (b) redundant sets

of devices and (c) data routing and

forwarding.

These relations, once defined in the

database, allow the system to automatically

perform many of the processing and control

functions which have previously required

explicit implementation. Again, this will

reduce the cost of configuring the system for

a specific mission

4.5 Navigation at the user interface

The System Element hierarchy is also used

to provide structure for the user interface

navigation facilities; the MMI allows

navigation through the database and through

the online parts of the system by following

the various links between the System

Elements. This allows easy movement from

say a gyro pack to its power source or to its
redundant unit.

644



:: i_i_iiiii,)

!:?!ii_?_i_i

_,+. •

i J_iii_I i

4.6 Procedure manipulation

The actual text of the procedures will be

made available via the System Elements.

For example, when viewing the contents of

the AOCS System Element the user will be

able to access all AOCS related procedures

directly from the MMI rather than via some

separate application and a numbering
convention to locate AOCS items.

4.7 Integration of ground & flight segments

Perhaps most importantly the concept of

System Elements has been extended to allow

their use to represent also portions of the

mission ground segment (for example

ground station equipment, wide area
networks, SCOS II workstations

themselves). This allows integrated monitor

and control of a complete mission system

from a single position. A particular

advantage of this is the possibility to merge

actions for the flight segment with actions

for the ground segment in a single SCOS II

Activity in the same way as they are merged

in the paper procedures of the current

systems. An example of such a merged

activity might be the AOS (Acquisition of

Signal) for a low earth orbiting spacecraft.

A simple summary of the steps involved

might be:

.

2.

3.

4.

5.

6.

7.

8.

Perform pre-pass dataflow tests (TC

to station)

verify dataflow tests(in flight &

station TM)

Transfer orbital elements to antenna

controller (TC to station)

Select Program Track (TC to station)
Wait for notification of receiver lock

(in Station TM)

Initiate uplink sweep TC to station)
Wait for onboard receiver lock

(in flight TM)
Select Auto Track (TC to station)

Previous mission systems have implemented

a variety of ad hoc approaches to such

combined control and monitoring of flight

and ground segments which however have

confirmed the benefit of such integration.

, CUSTOMISATION FOR

MISSIONS

The greater capabilities of SCOS II are
obtained at the cost of extra information

required to set up the system during

mission preparation.

To minimise this cost, the System Element

concept described in sect. 3 offers an

obvious vehicle for implementation of

mission specific requirements. System

Elements can be viewed as "building
blocks" which can serve as a basis for the

implementation of these requirements. They

can be extended and configured in two

different ways (a) by specialising building

blocks and (b) use of Operations Language

(Baldi et al., 1994):

5.1 Specialising Building Blocks

This is done by a mission specific software

engineering team. SCOS II is implemented

following an object oriented approach; in

particular the System Element is the base of

a class hierarchy which allows for

progressive,incremental specialisation

towards a final System Element

representing, for example, an onboard

computer for the 'XYZ' mission - see fig 2.

This is in fact the genuine software

reusability offered by object oriented

techniques.

In the long term it is hoped to achieve

further reuse of specialised building blocks

by sharing them between missions which use

the same units in the flight and ground

segments. Standardisation of mission

645



hardwareunits could thus bring much larger

cost savings than any of the measures taken

to improve the efficiency of implementation

of a single mission system.

5.2 Use of Operations Language

Operations engineers can also perform

customisation to make limited changes to

existing building blocks. SCOS II allows

configuration of many aspects of a System

Element through the use of the SCOS II

Operations Language. This language is a

synthesis of previous languages used in both

operations and checkout and allows the

production of not only of procedural or

algorithmic parts of System Elements (for

example command sequences, synthetic

telemetry parameters, verification

algorithms) but also rule-based parts which

allow the identification of Events (described

above) leading to the triggering of

Activities. The Operations Language may be

either compiled or interpreted; this choice

will be made by the operations team, based

on the conflicting needs of performance and

ease of modification for each System
Element.

6. HARDWARE CONFIGURATION

Initial installation of SCOS II at ESOC will

be on a Local Area Network of SUN Spare

10 workstations running the Solaris 2.3

operating system. However SCOS II is

being implemented to be portable across

almost any Unix (System V or POSIX

compatible) workstation platform. Parts of

the system developed to date have been

successfully run on SUN IPC and IPX

platforms; respectable performance has been

achieved without any particular attention to

optimisation. Small parts of the system have
also been run on Intel 486 based machines

so:t:

Mission XYZ OBC

Figure 2 An example of progressive specialisation

646



!iiii ii il
ili i_'_ :i

L

i: • ?

(running a largely System V compatible

Unix clone); initial indications are that

performance is comparable to that of the
smaller SUN machines and that this is also

a viable platform for missions with low data

rates (less than 10 kbits/s ) and without

exotic science data processing needs.

Although designed to be a distributed system

running on large networks of processors

SCOS II is also able to run on a single

workstation (although obviously no

redundancy is available in such a

configuration and some performance

limitations are to be expected) while still

supporting all functions of the distributed

system. No software or database

modifications are needed to run in this

manner. This configuration is known,

informally, as "SCOS II-in-a-box".

7. CONCLUSIONS

In conclusion it can be said that the SCOS II

project is the first attempt within ESA to

provide a highly configurable and reusable

software toolbox for building mission

control systems. Its main aim has been to

reduce costs, increase functionality and

achieve vendor independence. To achieve

cost saving mission specific costs, it uses

object-oriented and other modern techniques

to increase reusability and allow easy

customisation. Greater functionality is

provided; even in its Release 1 version

there is more functionality than in previous

ESA mission operations infrastructures and

this will improve further with Release 2 and
3 work foreseen in 1995-1998. Vendor

independence is provided through choice of

UNIX and suitable implementation measures

to achieve portability. This means that

SCOS II could be used for a wide range of

missions range from large ones requiring

30-40 workstations and high data rates down

to small, low cost missions based on one or

two low-cost platforms. Extension of its use

to other areas of the ground segment or

mission lifecycle (eg. spacecraft checkout,

backup control centres at station, ground

segment control) hold out the possibility of

further rationalisation and cost saving.

REFERENCES

Baldi, A., Elgaard, D., Lynenskjold, S., Pecchioli,

M., SCOS H OL: A Dedicated Language for Mission

Operations, (1994), Proceedings of the Third
International Symposium on Space Mission
Operations and Ground Data Systems, November
1994, Greenbelt, Maryland
Jones, M., Head N.C., Keyte, K. & Symonds, M.,
(1993) SCOS H - ESA's New Generation of Mission

Control System, ESA Bulletin 75
Kaufeler, P., Pecchioli, M., & Shurmer, I. (1994),
SCOS H - ESA's New Generation of Mission Control
System- The User's Perspective, Proceedings of the
Third International Symposium on Space Mission
Operations and Ground Data Systems, November
1994, Greenbelt, Maryland
Keyte, K.P., (1994) SCOS H - A Distributed

Architecture for Ground System Control, Proceedings
of the International Symposium on Spacecraft Ground
Control and Flight Dynamics,J. Brazilian Soc. of
Mech. Science, XVI(319).

Mullet, B., Kaufeler, J.F., Bowers, J. & Ahier,
M., (1990) The SCOS: A Configurable Infrastructure

for the Control of Spacecraft Using Packets , ESA
SP-308(29)

Pujo, O., Head N.C. & Jones, M., (1994) Object
Oriented Design, The Software Life Cycle and
Software Engineering Standards
Symonds, M., Lynenskjold, S., Miiller, C., SCOSII:
An Object Oriented Software Development Approach,
(1994), Proceedings of the Third International

Symposium on Space Mission Operations and
Ground Data Systems, November 1994, Greenbelt,
Maryland

647


